DO (N"T)

a story and some code

STAND SO CLOSE TO ME PART 3

From the moment I started the project Softwearables, the ideas I worked

with have to do with proximity and social conventions. The first step of my
research on this topic was presented in The Ever Mass land February 2009.
This trajectory continued during the summer and ended up as an installation

in Zennestraat 17, relocated in Bozar.

How do you greet a person,
should a handshake be?

This phase of Softwearables is about the invis-
ible zones you have around you (of course, all
of this in a European context). When you talk
to someone, you are inclined to stand at a cer-
tain distance from them.

how strong/soft/close

Standing very close to someone is only permit-
ted when you know them very well. Standing
too far will influence your communication as
well. In a tram, festival, crowded area, this no-
tion of zone gets scrambled, yet you do kind of
try to keep your personal space. In a city your
personal space has different proportions com-
pared to standing in an open desert. You posi-
tion yourself differently.

With these personal observations/ideas in mind
I started working on a wearable in two forms:
“Do stand so close to me” & “Don’t stand so close
to me”. Sometimes you want proximity and oth-
er moments it is very important to create your
personal space. You can choose the version.



I programmed 4 zones — which are open for
discussion. They can be changed easily in the
Arduino chip of this installation.

- very close: less than 25 cm

- close: between 25 cm and 90 cm
- futher: between 90 cm and 2 m
- far: 2m and beyond

If you are in a specific perimeter of the wear-
able, a led will light up — and a voice will tell
you at what distance you are standing, enabling
you to really feel these invisible boundaries.
The visitor can decide to interact and play —
really experience what distance is still comfort-
able and when it is no longe the case.

In the periphery of this physical space, I did
think about virtual proximity as well: on cer-
tain social platforms, the term “friend” looses
its initial value. What if you want to accept
someone as a stranger, or an acquaintance?
Can you be so explicit in tagging someone as a
non-friend?

Technical specifications & Credits

Electronics are shiny, white, black, silvery closed boxes. | chose
to work with open hardware and show the seams, components,
threads, wire, and the minibrain of this installation which is a mi-
croprocessor called Arduino.

A Sonar connected to this chip detects the physical proximity of
someone, which triggers four leds in a certain perimeter (very close,
close, further and far). Voice(s) — a Waveshield on top of the Ar-
duino — fell you af certain distances how many centimeters there
is in between you and the person (mostly a mannequin) measur-
ing. The public can wear the detection “sheet”.

In order to get this set-up working, you need to programme the Ar-
duino, flash some code onto it’s little chip through usb. Once it has
been programmed, it franslates the signal it gets from the Sonar,
which converts this into signals for the leds (into light) and info
pulses which start a sound.

On the following pages | publish the code written to make this set-
up work. It is not the cleanest code in the world — but it was made
through cooperation. For the first part of the code — to make the
leds work — | got a massive amount of help from Johannes Tael-
man (through the code31 malinglist — and some conversational
proprietary software). The second part, making the sound work
with the Waveshield could not have been possible without the ex-
cellent online tutorials from Limor Fried aka Ladyada. She devel-
ops the waveshield (physical object) and she explains how to work
with it, providing code examples and forum support. The Forum
helped me debug some of my code, and | had some “live” help —
from two Pieters @ Hackerspace Brussels. Ludivine Loiseau did
the graphic design on the text. Hereby thanks to everyone, includ-
ing Kurt Vanhoutte from Timelab where | could make the vinylcut
iron-able letters and Mannaert-Boets for transport.

This project was made with free — as in liberty - software (Ardu-
ino, Processing — in an earlier stage —, Ardour, Jack) and is avail-
able under a Free Art License. (The Free Art license is the English
language version of the Licence Art Libre, a French copyleft li-
cense for works of art. Created in July 2000, it is the first free li-
cense, in the spirit of the GNU General Public License, dedicated
to works of art. The Free Art licence authorises the user to freely
copy, spread, and transform creative works while respecting the
author's rights.)

Softwearables - do(n’t) stand so close to me part
3 —is a moment in my research on physical computing, wearables
and sound, a trajectory supported by the Viaamse
Gemeenschapscommissie.

At http://capacitor.
constantvzw.org

you can get a digital
version of this text
and the code.



//Softwearables Arduino frankenscript with Sonar
and Waveshield

#define
#define
#define
#define

RLEDT 14 //testled
RLED2 15 //testled
RLED3 16 //testled
RLED4 17 //testled

the
the
the
the

duino
duino
duino
duino

on
on
on
on

#include <AF_Wave.h>
#include <avr/pgmspace.h>

#include
#include

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

AF_Wave
File f;
boolean
ebben,

int wasplaying =

"util.h"

"wave.h"
one "0T1.WAV"
two "02.WAV"
three "03.WAV"
four "04.WAV"
five "05.wWAV"
six "06.WAV"
seven "07.WAV"
eight "08.WAV"
nine "09.wWAV"
nine "10.WAV"
redled 9

card;
// kan twee

file_is_open=false; waarden h

false of true
Wavefile wave;

// only one!

0;

int rval;

int pingPin =

7;

void setup ()

{

Serial.
Serial.
pinMode (RLEDT,
pinMode
pinMode
pinMode
pinMode
pinMode
pinMode
pinMode
pinMode

if

}
if

}
if

}
if

}

begin (9600);
printin("Wave test!");
OUTPUT)
RLED2, OUTPUT)
RLED3, OUTPUT)
RLED4, OUTPUT)
OUTPUT) ;
OUTPUT) ;
OUTPUT) ;
OUTPUT) ;
redled, OUTPUT);

.
4
.
4
.
4

14

2,
3,
4,
S,

Py

(!card.init_card()) {
putstring_nl ("Card

init. failed!"); return;

(!card.open_partition()) {
putstring_nl ("No partition!");

return;

(!card.open_filesys()) {
putstring_nl ("Couldn’t open filesys");

return;

(!card.open_rootdir()) {
putstring_nl ("Couldn’t open dir");

return;



putstring_nl ("Files found:");
1s();
}

void Toop ()
{

long duration, inches, cm;

// The PING))) is triggered by a HIGH pulse of 2
or more microseconds.

// We give a short LOW pulse beforehand to ensur
e a clean HIGH pulse.

pinMode (pingPin, OUTPUT);

digitalWrite(pingPin, LOW);
delayMicroseconds (2);

digitalWrite(pingPin, HIGH);
delayMicroseconds (5);

digitalWrite(pingPin, LOW);

// The same pin is used to read the signal from
the PING))): a HIGH

// pulse whose duration is the time (in microsec
onds) from the sending

// of the ping to the reception of its echo off
of an object.

pinMode (pingPin, INPUT);

duration = pulseln(pingPin, HIGH);

// convert the time into a distance
inches = microsecondsTolnches (duration);
cm = microsecondsToCentimeters (duration);

Serial.print(cm);
Serial.print("cm ");
Serial.printin();

if (cm<25) {

digitalwWrite (RLEDT, LOW);
digitalWrite (RLED2, LOW);
digitalWrite (RLED3, LOW);
digitalWrite (RLED4, HIGH);

else if ((cm>26) && (cm<90)
digitalWrite (RLED1, LOW);
digitalWrite (RLED2, LOW);
digitalWrite (RLED3, HIGH
digitalWrite (RLED4, LOW)

Py

else if ((cm>91) && (cm<200)) {
digitalWrite (RLED1T, LOW);
digitalWrite (RLED2, HIGH);
digitalWrite (RLED3, LOW);
digitalWrite (RLED4, LOW);

o~ o~~~

else if ((cm>201) && (cm<300)) {



digitalWrite
digitalWrite
digitalWrite
digitalWrite

RLED1, HIGH
RLED2, LOW
RLED3, LOW
RLED4, LOW

}

if ((em>2) && (cm<4d)) {
if (!wave.isplaying) {

playfile(one);
}
}

if ((ecm>4) && (cm<6)) {
if (!wave.isplaying) {

playfile(two);
}
}

if ((cm>19) && (cm<21)) |
if (!wave.isplaying) {

playfile(three);
}
}

if ((cm>28) && (cm<32)) {
if (!wave.isplaying) {

playfile(four);
}
}

if ((cm>47) && (cm<52)) {
if (!wave.isplaying) {

playfile(five);
}
}

if ((cm>66) && (cm<73)) {
if (!wave.isplaying) {

playfile(six);
}
}

if ((ecm>96) && (cm<105)) {
if (!wave.isplaying) {

playfile(seven);
}
}

if ((cm>196) && (cm<205)) {
if (!wave.isplaying) {

playfile(eight);
}



}

if ((cm>246) && (cm<255)) {
if (!wave.isplaying) {

playfile(nine);
}
}

if ((cm>295) && (cm<306)) {
if (!wave.isplaying) {

playfile(six);
}
}

delay (100);
}

long microsecondsTolnches (1ong microseconds)

{

// According to Parallax’s datasheet for the PIN
G))), there are

// 73.746 microseconds per inch (i.e. sound trav
els at 1130 feet per

// second). This gives the distance travelled b
y the ping, outbound

// and return, so we divide by 2 to get the dist
ance of the obstacle.

// See: http://www.parallax.com/dl/docs/prod/acc
/28015-PING-v1.3.pdf

return microseconds / 74 / 2;

}

long microsecondsToCentimeters (long microseconds)
{

// The speed of sound is 340 m/s or 29 microseco
nds per centimeter.

// The ping travels out and back, so to find the
distance of the

// object we take half of the distance travelled

return microseconds / 29 / 2;

}

void Ts () {
char namel[13];
card.reset_dir();
putstring_nl ("Files found:");
while (1) {

if (!card.get_next_name_in_dir(name)) {
card.reset_dir();
return;

}

Serial.println(name);
}
}

void playfile(char *name) {
if (wave.isplaying) {// already playing someth



ing, so stop it!
wave.stop(); // stop it
}
if (file_is_open) {
card.close_file(f);

file_is_open = false;
}
f = card.open_file(name);
file_is_open = true;
if (!'f) |

putstring_nl ("Couldn’t open file"); return;
}
if (!wave.create(f)) {
putstring_nl ("Not a valid WAV"); return;
}
// ok time to play!
wave.play();





